中国中西医结合急救杂志

期刊简介

  《中国中西医结合急救杂志》为中国中西医结合学会主办的中西医结合急救专业性学术期刊,为中文核心期刊、中国科技论文统计源(科技核心)期刊、中国精品科技期刊。连续2年被评为中国科协精品科技期刊工程项目资助期刊,连续7次(14年)荣获天津市优秀期刊奖、天津市一级期刊,荣获天津市期刊编校质量奖,首届《CAJ-CD》规范优秀奖。在科技部中国科技信息研究所出版的《中国科技期刊引证报告》(核心版)中,杂志影响因子连续8年在本学科领域内排全国前3位,且逐年提高。在科技部中信所2010年CJCR核心版影响因子1.039,排第1位。历年向中国科协推荐的多篇论文在全国优秀学术论文评选中都获得优秀论文奖,取得了巨大的社会效益。期刊现已进入美国《化学文摘》(CA)、俄罗斯《文摘杂志》(AJ)、WHO西太平洋地区医学索引(WPRIM)、美国《乌利希期刊指南》(UPD)、中文核心期刊要目总览、中国科技论文统计源期刊、中国学术期刊文摘(中、英文版)、中文生物医学期刊目次数据库(CMCC)、中国生物医学期刊引文数据库(CMCI)、中国学术期刊综合评价数据库(CAJCED)、中国期刊全文数据库(CJFD)、中国中医药文献数据库、中国学术期刊(光盘版)(CAJ-CD)、中国科技信息研究所“万方数据网络系统(China Info)”、万方医学网、国家中医药管理局“中国传统医药信息网”、“em120.com危重病急救在线”等。《中国中西医结合急救》杂志把关注学科发展、服务学科发展作为办刊宗旨,以服务广大医药卫生科技人员、推动具有我国特点的中西医结合急救医学基础与临床学科的发展为宗旨,以全面反映我国中西医结合急救医学基础理论及临床科研成果、普及有关中西医结合急救医学临床的基本知识和技能、推广现代中西医结合急救医学先进技术、快速传递国内外急救医学前沿信息、加强国内及国际间学术交流为己任。刊出文章能反映国内学术水平,有创新性和探索性,科研设计合理,预见准确,有一定的学术价值。现已成为反映我国中西医结合急救医学学科建设水平、成果和发展状况的权威性的杂志,在中西医结合急救医学领域的学术刊物中处于重要地位,并在国际上受到关注。本刊坚持理论与实践相结合、提高与普及相结合的办刊方针,倡导百花齐放、百家争鸣。本刊实行同行专家审稿制度。设有述评、专家论坛、标准与规范、论著、研究报告、经验交流、病例报告、方法介绍、治则·方剂·针灸、循证医学、综述、讲座、理论探讨、临床病例(病理)讨论、科研新闻速递、消息、会议纪要、读者·作者·编者等栏目。作者在投稿时需提供投稿文章的电子版,发至邮箱 (cccm@em120.com),同时邮寄纸质稿2份;单位介绍信;审稿费100元;有各类科研基金资助的需提供带审批章和课题号的证明复印件;第一作者简介(出生年、性别、民族、籍贯、硕士以上学位、职称、主要研究方向等);第一作者或通信作者联系方式(手机、Email等)。本刊为双月刊,单月28日出刊,国内外公开发行。邮发代号:6-93,定价:每期45元,全国各地邮局办理订阅手续,过刊和散刊可在本刊发行部购买。


AI医疗革命:诊断精准度提升23%

时间:2025-08-15 17:02:06

在当代医学实践中,人工智能技术的渗透正以革命性的方式重塑诊断流程的精确性与效率。这种变革并非简单替代人类医生,而是通过算法与数据的协同,构建起多维度、动态化的辅助决策体系。以新型算法驱动的多模态数据融合为例,其核心在于模拟专家会诊的思维模式——深度协同学习网络(DCLN)通过整合影像资料、病史文本、实验室检测结果等异构数据,如同组建一支跨学科医疗团队,实现对疾病特征的立体化挖掘。这种技术在上海医疗大模型验证中心的临床测试中显示,对复杂病例的诊断一致性较传统方法提升23%,印证了数据协同的倍增效应。

影像识别:从静态分析到动态预测

医学影像领域见证了最显著的技术跃迁。深度学习算法已突破单一图像识别的局限,形成覆盖X光、CT、MRI的多模态分析网络。例如联影集团部署的肺结核筛查系统,通过时间序列影像比对,不仅能标记当前病灶,还能预测纤维化病灶的演变趋势,使新疆莎车县这类医疗资源匮乏地区实现百万级人口的快速筛查。这种技术将影像诊断从"拍片即结论"的静态模式,升级为持续跟踪疾病发展的动态监测系统。值得注意的是,商汤医疗开发的近百款辅助工具中,融合多模态数据的诊断模型误诊率较单模态系统降低41%,凸显跨维度信息互补的价值。

实时诊断的瓶颈与突破

尽管AI在理想环境下表现优异,真实医疗场景的复杂性仍构成严峻挑战。当前多数系统面临数据更新滞后问题——电子病历的非结构化记录、不同医疗机构的数据壁垒,导致算法难以实现真正意义上的实时响应。针对这一痛点,上海构建的算力-数据-验证闭环体系提供了可行路径:其开源评测社区通过标准化数据接口,使AI模型能持续吸收最新临床案例,保持诊断逻辑的时效性。更值得关注的是DCLN算法设计的动态权重机制,当处理急诊病例时,系统会自动强化生命体征数据的分析权重,在争分夺秒的急救场景中实现90秒内完成危重病分级。

在评估这些技术创新的学术价值时,单纯追求查重率指标显然失之偏颇。正如多模态融合需要平衡不同数据源的贡献度,优质学术研究也应注重创新性与严谨性的配比。医疗AI领域真正具有里程碑意义的研究,如《2025人工智能+卫生健康上海实践》收录的案例,往往体现为算法创新与临床痛点的精准对接,而非技术参数的简单堆砌。当学术界能建立兼顾理论突破与实际效用的评价体系,或许才能避免"为创新而创新"的陷阱,让技术真正服务于生命健康的终极目标。