
期刊简介
《中国中西医结合急救杂志》为中国中西医结合学会主办的中西医结合急救专业性学术期刊,为中文核心期刊、中国科技论文统计源(科技核心)期刊、中国精品科技期刊。连续2年被评为中国科协精品科技期刊工程项目资助期刊,连续7次(14年)荣获天津市优秀期刊奖、天津市一级期刊,荣获天津市期刊编校质量奖,首届《CAJ-CD》规范优秀奖。在科技部中国科技信息研究所出版的《中国科技期刊引证报告》(核心版)中,杂志影响因子连续8年在本学科领域内排全国前3位,且逐年提高。在科技部中信所2010年CJCR核心版影响因子1.039,排第1位。历年向中国科协推荐的多篇论文在全国优秀学术论文评选中都获得优秀论文奖,取得了巨大的社会效益。期刊现已进入美国《化学文摘》(CA)、俄罗斯《文摘杂志》(AJ)、WHO西太平洋地区医学索引(WPRIM)、美国《乌利希期刊指南》(UPD)、中文核心期刊要目总览、中国科技论文统计源期刊、中国学术期刊文摘(中、英文版)、中文生物医学期刊目次数据库(CMCC)、中国生物医学期刊引文数据库(CMCI)、中国学术期刊综合评价数据库(CAJCED)、中国期刊全文数据库(CJFD)、中国中医药文献数据库、中国学术期刊(光盘版)(CAJ-CD)、中国科技信息研究所“万方数据网络系统(China Info)”、万方医学网、国家中医药管理局“中国传统医药信息网”、“em120.com危重病急救在线”等。《中国中西医结合急救》杂志把关注学科发展、服务学科发展作为办刊宗旨,以服务广大医药卫生科技人员、推动具有我国特点的中西医结合急救医学基础与临床学科的发展为宗旨,以全面反映我国中西医结合急救医学基础理论及临床科研成果、普及有关中西医结合急救医学临床的基本知识和技能、推广现代中西医结合急救医学先进技术、快速传递国内外急救医学前沿信息、加强国内及国际间学术交流为己任。刊出文章能反映国内学术水平,有创新性和探索性,科研设计合理,预见准确,有一定的学术价值。现已成为反映我国中西医结合急救医学学科建设水平、成果和发展状况的权威性的杂志,在中西医结合急救医学领域的学术刊物中处于重要地位,并在国际上受到关注。本刊坚持理论与实践相结合、提高与普及相结合的办刊方针,倡导百花齐放、百家争鸣。本刊实行同行专家审稿制度。设有述评、专家论坛、标准与规范、论著、研究报告、经验交流、病例报告、方法介绍、治则·方剂·针灸、循证医学、综述、讲座、理论探讨、临床病例(病理)讨论、科研新闻速递、消息、会议纪要、读者·作者·编者等栏目。作者在投稿时需提供投稿文章的电子版,发至邮箱 (cccm@em120.com),同时邮寄纸质稿2份;单位介绍信;审稿费100元;有各类科研基金资助的需提供带审批章和课题号的证明复印件;第一作者简介(出生年、性别、民族、籍贯、硕士以上学位、职称、主要研究方向等);第一作者或通信作者联系方式(手机、Email等)。本刊为双月刊,单月28日出刊,国内外公开发行。邮发代号:6-93,定价:每期45元,全国各地邮局办理订阅手续,过刊和散刊可在本刊发行部购买。
AI伦理:学术与医疗的隐形病灶
时间:2025-08-12 16:10:11
随着人工智能技术渗透至学术研究与医疗诊断领域,其引发的伦理争议已从工具性争议升级为系统性挑战。当ChatGPT生成的论文通过检测系统漏洞获得发表资格,当医疗AI的算法因训练数据偏见导致误诊却无人承担学术责任,技术光环下的伦理病灶亟待一场深度扫描。
ChatGPT检测:学术诚信防线的技术性溃败
当前学术机构依赖的AI检测工具存在显著漏洞。例如,部分改写后的AI生成文本可通过调整句式结构规避查重,而检测系统对"思想抄袭"(即观点复刻而非文字复制)的识别率不足30%。这种现象类似于医疗影像诊断中因分辨率不足导致的"假阴性"——表面合规的论文实则携带学术不端基因。更严峻的是,商业化检测工具与生成工具的博弈催生出"对抗性生成网络",正如医疗AI领域为规避监管而设计的算法黑箱,最终形成"猫鼠游戏"式的技术内耗。
署名权争议:人机协作的学术身份困境
在医疗AI辅助诊断研究中,作者列表出现"算法贡献者"与"人类研究者"的权重争议。某期刊要求将深度学习模型列为共同作者,引发学界对"机器署名权"的激烈辩论。这类似于医疗影像分析中CNN网络(卷积神经网络)的角色界定——当算法不仅能识别病灶还能自主生成诊断逻辑时,其贡献已超越工具范畴。但现行学术规范仍将AI定位为"高级显微镜",这种认知偏差导致研究者面临两难:过度披露AI参与度可能削弱成果价值,隐瞒则构成学术欺诈。
算法抄袭:医疗AI中的知识盗猎现象
医疗诊断算法的"参数复制"问题尤为隐蔽。研究者将公开模型的神经网络架构稍作修改后宣称原创,这种"换肤式抄袭"如同利用不同CT设备生成相似影像报告,实质是同一诊断逻辑的重复应用。某乳腺癌筛查AI被曝直接套用开源代码却未引用原始论文,其行为堪比学术界的"器官移植未标注供体"。更复杂的是算法迭代过程中的"知识污染"——后续研究可能无意中延续初始模型的偏见,例如将皮肤色素沉着与癌症风险错误关联。
学术影像学:诊断准确性与伦理敏感性的双重标准
在人工智能辅助医疗诊断研究中,存在显著的伦理评价失衡。卷积神经网络(CNN)处理医学影像时准确率可达95%,但对其决策过程中可能放大的种族、性别偏见却缺乏同等严格的审查。这就像肯定一台CT机的高清成像能力,却忽视其辐射超标的风险。当前学术评价体系对技术效能的追捧,与对伦理影响的漠视形成尖锐对比,导致医疗AI论文中常见"准确率+0.5%,伦理讨论-200字"的畸形结构。
构建伦理免疫型学术生态需要多维度干预。技术层面应开发"道德嵌入型"检测工具,如同医疗AI中的实时偏误警报系统;制度层面需建立算法贡献披露标准,明确AI参与研究的署名边界;学术共同体则要超越"准确率至上主义",将伦理审计纳入论文评审的核心指标。只有当技术审查具备与病理诊断同等的严谨度,学术伦理的病灶才能真正显影。